Modular design automation of the morphologies, controllers, and vision systems for intelligent robots: a survey

Author:

Li Wenji,Wang Zhaojun,Mai Ruitao,Ren Pengxiang,Zhang Qinchang,Zhou Yutao,Xu Ning,Zhuang JiaFan,Xin Bin,Gao Liang,Hao Zhifeng,Fan ZhunORCID

Abstract

AbstractDesign automation is a core technology in industrial design software and an important branch of knowledge-worker automation. For example, electronic design automation (EDA) has played an important role in both academia and industry. Design automation for intelligent robots refers to the construction of unified modular graph models for the morphologies (body), controllers (brain), and vision systems (eye) of intelligent robots under digital twin architectures, which effectively supports the automation of the morphology, controller, and vision system design processes of intelligent robots by taking advantage of the powerful capabilities of genetic programming, evolutionary computation, deep learning, reinforcement learning, and causal reasoning in model representation, optimization, perception, decision making, and reasoning. Compared with traditional design methods, MOdular DEsigN Automation (MODENA) methods can significantly improve the design efficiency and performance of robots, effectively avoiding the repetitive trial-and-error processes of traditional design methods, and promoting automatic discovery of innovative designs. Thus, it is of considerable research significance to study MODENA methods for intelligent robots. To this end, this paper provides a systematic and comprehensive overview of applying MODENA in intelligent robots, analyzes the current problems and challenges in the field, and provides an outlook for future research. First, the design automation for the robot morphologies and controllers is reviewed, individually, with automated design of control strategies for swarm robots also discussed, which has emerged as a prominent research focus recently. Next, the integrated design automation of both the morphologies and controllers for robotic systems is presented. Then, the design automation of the vision systems of intelligent robots is summarized when vision systems have become one of the most important modules for intelligent robotic systems. Then, the future research trends of integrated “Body-Brain-Eye” design automation for intelligent robots are discussed. Finally, the common key technologies, research challenges and opportunities in MODENA for intelligent robots are summarized.

Funder

Science and Technology Special Funds Project of Guangdong Province of China

National Key R&D Program of China

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province of China

STU Scientific Research Foundation for Talents

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A lightweight encoder–decoder network for automatic pavement crack detection;Computer-Aided Civil and Infrastructure Engineering;2023-10-03

2. Coordinated Multi-UAV Reconnaissance Scheme for Multiple Targets;Applied Sciences;2023-10-02

3. A Constrained Multi-Objective Evolutionary Algorithm Based on Early Convergence Followed by Diversity;2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS);2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3