A review of point cloud segmentation for understanding 3D indoor scenes

Author:

Sun YuliangORCID,Zhang XudongORCID,Miao YongweiORCID

Abstract

AbstractPoint cloud segmentation is an essential task in three-dimensional (3D) vision and intelligence. It is a critical step in understanding 3D scenes with a variety of applications. With the rapid development of 3D scanning devices, point cloud data have become increasingly available to researchers. Recent advances in deep learning are driving advances in point cloud segmentation research and applications. This paper presents a comprehensive review of recent progress in point cloud segmentation for understanding 3D indoor scenes. First, we present public point cloud datasets, which are the foundation for research in this area. Second, we briefly review previous segmentation methods based on geometry. Then, learning-based segmentation methods with multi-views and voxels are presented. Next, we provide an overview of learning-based point cloud segmentation, ranging from semantic segmentation to instance segmentation. Based on the annotation level, these methods are categorized into fully supervised and weakly supervised methods. Finally, we discuss open challenges and research directions in the future.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Reference105 articles.

1. Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M. E., & Beetz, M. (2008). Towards 3D point cloud based object maps for household environments. Robotics and Autonomous Systems, 56(11), 927–941.

2. Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Li, F., et al. (2017). Target-driven visual navigation in indoor scenes using deep reinforcement learning. In Proceedings of the IEEE international conference on robotics and automation (pp. 3357–3364). Piscataway: IEEE.

3. Wirth, F., Quehl, J., Ota, J., & Stiller, C. (2019). Pointatme: efficient 3D point cloud labeling in virtual reality. In Proceedings of the 2019 IEEE intelligent vehicles symposium (pp. 1693–1698). Piscataway: IEEE.

4. Li, J., Gao, W., Wu, Y., Liu, Y., & Shen, Y. (2022). High-quality indoor scene 3D reconstruction with RGB-D cameras: a brief review. Computational Visual Media, 8(3), 369–393.

5. Nguyen, A., & Le, B. (2013). 3D point cloud segmentation: a survey. In Proceedings of the 6th IEEE conference on robotics, automation and mechatronics (pp. 225–230). Piscataway: IEEE.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3