Efficient propagation of suspended HL-60 cells in a disposable bioreactor supporting wave-induced agitation at various Reynolds number

Author:

Wierzchowski Kamil,Grabowska Iwona,Pilarek Maciej

Abstract

AbstractGrowth of human nonadherent HL-60 cell cultures performed in disposable bioreactor under various hydrodynamic conditions of 2-D wave-assisted agitation has been compared and discussed. Influence of Reynolds number for liquid (ReL) and the kLa coefficient, as key parameters characterized the bioprocessing of HL-60 cells in ReadyToProcess WAVETM 25 system, on reached values of the apparent maximal specific growth rate (μmax) and the specific yield of biomass (Y*X/S) has been identified. The values of ReL (i.e., 510–10,208), as well as kLa coefficient (i.e., 2.83–13.55 h−1), have been estimated for the cultures subjected to wave-induced mixing, based on simplified dimensionless correlation for various presents of WAVE 25 system. The highest values of apparent μmax = 0.038 h−1 and Y*X/S = 25.64 × 108 cells gglc−1 have been noted for cultures independently performed at wave-induced agitation characterized by ReL equaled to 5104 and 510, respectively. The presented results have high applicability potential in scale-up of bioprocesses focused on nonadherent animal cells, or in the case of any application of disposable bioreactors presenting similitude.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3