Oxygen Transfer Effects in a Two-Phase System of an Aqueous Phase and Liquid Perfluorochemical Subjected to Continuous Wave-Assisted Agitation in Disposable Bioreactor

Author:

Wierzchowski KamilORCID,Sobieszuk PawełORCID,Pilarek MaciejORCID

Abstract

Systems of two immiscible liquid phases—aqueous phase (i.e., distilled water (dH2O) or phosphate-buffered saline (PBS)) and liquid perfluorochemical (i.e., perfluorodecalin (PFD))—were subjected to wave-assisted agitation, i.e., oscillatory rocked, in a disposable bag-like container in a ReadyToProcess WAVETM25 bioreactor, to recognize oxygen transfer effects and effectivity of the surface aeration. According to the DoE methodology, values of the volumetric liquid-side mass transfer (kLa) coefficient for dH2O, PBS, dH2O-PFD, and PBS-PFD systems were determined for the whole range of operating parameters of the WAVE 25 bioreactor. A significantly higher maximal value of kLa was found for waving dH2O than for dH2O-PFD (i.e., 0.00460 s−1 vs. 0.00331 s−1, respectively) compared to more equal maximal values of kLa reached for PBS and PBS-PFD (0.00355 s−1 vs. 0.00341 s−1, respectively). The interface development factor (f) depended on the interfacial area a, and the enhancement factor (EPFD), depending on kLa, was introduced to quantitatively identify the mass transfer effects in the systems of waving two immiscible liquids. The phase of PFD was identified as the reservoir of oxygen. Dimensional correlations were proposed for the prediction of the kLa coefficient, in addition to the f and EPFD factors. The presented correlations, and the set of kLa values, can be directly applied to predict oxygen transfer effects reached under continuous oscillatory rocked systems containing aqueous phase and liquid perfluorochemical.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3