ddRAD-seq derived genome-wide SNPs, high density linkage map and QTLs for fruit quality traits in strawberry (Fragaria x ananassa)

Author:

Natarajan Sathishkumar,Hossain Mohammad Rashed,Kim Hoy-Taek,Denison Michael Immanuel Jesse,Ferdous Mostari Jahan,Jung Hee-Jeong,Park Jong-In,Nou Ill-SupORCID

Abstract

AbstractUnderstanding the genetic determinants are essential for improving the fruit quality traits of strawberry. In this study, we focused on mapping the loci for fruit-length (FL), -diameter (FD), -weight (FW) and -soluble solid content (SSC) using the genome-wide single nucleotide polymorphisms (SNPs) identified via ddRAD-sequencing of the F1 population raised from Maehyang (♀) X Festival (♂). A total of 12,698 high quality SNPs were identified of which 1554 SNPs that showed significant Mendelian segregation (p < 0.05) were mapped to 53 linkage groups (LG) spanning a total of 2937.93 cM with an average marker density of 2.14 cM/locus. Six QTLs for FL and four QTLs for each of FD, FW and SSC were identified that explained 24–35%, 21–42%, 24–54% and 23–50% of overall phenotypic variations, respectively. The genes that lie within these QTL regions were extracted and discussed thoroughly. In addition, a high resolution melting marker (MF154) were designed based on the SNP A1723G of the UDP-glucose 4-epimerase GEPI48-like gene FAN_iscf00021287. The marker detected the high vs low sugar containing F1 plants and commercial cultivars with 81.39% and 86.95% detection accuracy, respectively. These SNPs, linkage map, QTLs and candidate genes will be helpful in understanding and improving the fruit quality traits of strawberry.

Funder

Ministry of Agriculture, Food and Rural affairs in the Republic of Korea

Publisher

Springer Science and Business Media LLC

Subject

Agricultural and Biological Sciences (miscellaneous),Environmental Science (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3