Maximal inequalities for stochastic convolutions and pathwise uniform convergence of time discretisation schemes

Author:

van Neerven Jan,Veraar MarkORCID

Abstract

AbstractWe prove a new Burkholder–Rosenthal type inequality for discrete-time processes taking values in a 2-smooth Banach space. As a first application we prove that if $$(S(t,s))_{0\leqslant s\le t\leqslant T}$$ ( S ( t , s ) ) 0 s t T is a $$C_0$$ C 0 -evolution family of contractions on a 2-smooth Banach space X and $$(W_t)_{t\in [0,T]}$$ ( W t ) t [ 0 , T ] is a cylindrical Brownian motion on a probability space $$(\Omega ,{\mathbb {P}})$$ ( Ω , P ) adapted to some given filtration, then for every $$0<p<\infty $$ 0 < p < there exists a constant $$C_{p,X}$$ C p , X such that for all progressively measurable processes $$g: [0,T]\times \Omega \rightarrow X$$ g : [ 0 , T ] × Ω X the process $$(\int _0^t S(t,s)g_s\,\mathrm{d} W_s)_{t\in [0,T]}$$ ( 0 t S ( t , s ) g s d W s ) t [ 0 , T ] has a continuous modification and $$\begin{aligned} {\mathbb {E}}\sup _{t\in [0,T]}\Big \Vert \int _0^t S(t,s)g_s\,\mathrm{d} W_s \Big \Vert ^p\leqslant C_{p,X}^p {\mathbb {E}} \Bigl (\int _0^T \Vert g_t\Vert ^2_{\gamma (H,X)}\,\mathrm{d} t\Bigr )^{p/2}. \end{aligned}$$ E sup t [ 0 , T ] 0 t S ( t , s ) g s d W s p C p , X p E ( 0 T g t γ ( H , X ) 2 d t ) p / 2 . Moreover, for $$2\leqslant p<\infty $$ 2 p < one may take $$C_{p,X} = 10 D \sqrt{p},$$ C p , X = 10 D p , where D is the constant in the definition of 2-smoothness for X. The order $$O(\sqrt{p})$$ O ( p ) coincides with that of Burkholder’s inequality and is therefore optimal as $$p\rightarrow \infty $$ p . Our result improves and unifies several existing maximal estimates and is even new in case X is a Hilbert space. Similar results are obtained if the driving martingale $$g_t\,\mathrm{d} W_t$$ g t d W t is replaced by more general X-valued martingales $$\,\mathrm{d} M_t$$ d M t . Moreover, our methods allow for random evolution systems, a setting which appears to be completely new as far as maximal inequalities are concerned. As a second application, for a large class of time discretisation schemes (including splitting, implicit Euler, Crank-Nicholson, and other rational schemes) we obtain stability and pathwise uniform convergence of time discretisation schemes for solutions of linear SPDEs $$\begin{aligned} \,\mathrm{d} u_t = A(t)u_t\,\mathrm{d} t + g_t\,\mathrm{d} W_t, \quad u_0 = 0, \end{aligned}$$ d u t = A ( t ) u t d t + g t d W t , u 0 = 0 , where the family $$(A(t))_{t\in [0,T]}$$ ( A ( t ) ) t [ 0 , T ] is assumed to generate a $$C_0$$ C 0 -evolution family $$(S(t,s))_{0\leqslant s\leqslant t\leqslant T}$$ ( S ( t , s ) ) 0 s t T of contractions on a 2-smooth Banach spaces X. Under spatial smoothness assumptions on the inhomogeneity g, contractivity is not needed and explicit decay rates are obtained. In the parabolic setting this sharpens several know estimates in the literature; beyond the parabolic setting this seems to provide the first systematic approach to pathwise uniform convergence to time discretisation schemes.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Modelling and Simulation,Statistics and Probability

Reference111 articles.

1. Agresti, A., Veraar, M.C.: Nonlinear parabolic stochastic evolution equations in critical spaces. Part I: Stochastic maximal regularity and local existence. (2020) Accepted for publication in Nonlinearity, arXiv:2001.00512

2. Mathematics and its Applications (Soviet Series);YI Belopolskaya,1990

3. Bréhier, Ch-E, Cui, J., Hong, J.: Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen–Cahn equation. IMA J. Numer. Anal. 39(4), 2096–2134 (2019)

4. Bréhier, Ch-E, Goudenège, L.: Analysis of some splitting schemes for the stochastic Allen–Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 24(8), 4169–4190 (2019)

5. Brenner, P., Thomée, V.: Stability and convergence rates in $$L_{p}$$ for certain difference schemes. Math. Scand. 27, 5–23 (1970)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3