Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen–Cahn equation

Author:

Bréhier Charles-Edouard1,Cui Jianbo2,Hong Jialin3

Affiliation:

1. Université de Lyon, CNRS, Université Claude Bernard Lyon, UMR, Institut Camille Jordan, Villeurbanne, France

2. LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China

3. School of Mathematical Science, University of Chinese Academy of Sciences, Beijing, China

Abstract

Abstract This article analyses an explicit temporal splitting numerical scheme for the stochastic Allen–Cahn equation driven by additive noise in a bounded spatial domain with smooth boundary in dimension $d\leqslant 3$. The splitting strategy is combined with an exponential Euler scheme of an auxiliary problem. When $d=1$ and the driving noise is a space–time white noise we first show some a priori estimates of this splitting scheme. Using the monotonicity of the drift nonlinearity we then prove that under very mild assumptions on the initial data this scheme achieves the optimal strong convergence rate $\mathcal{O}(\delta t^{\frac 14})$. When $d\leqslant 3$ and the driving noise possesses some regularity in space we study exponential integrability properties of the exact and numerical solutions. Finally, in dimension $d=1$, these properties are used to prove that the splitting scheme has a strong convergence rate $\mathcal{O}(\delta t)$.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference28 articles.

1. Full discretization of semilinear stochastic wave equations driven by multiplicative noise;Anton;SIAM J. Numer. Anal.,2016

2. Strong convergence rates for explicit space-time discrete numerical approximations of stochastic Allen-Cahn equations.;Becker,2017

3. Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg–Landau equations;Becker,2016

4. Analysis of some splitting schemes for the stochastic Allen–Cahn equation;Bréhier,2018

5. On stochastic convolution in Banach spaces and applications;Brzeźniak;Stochastics,1997

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3