Abstract
AbstractNeedle-like microstructures are often observed in shape memory alloys near macro-interfaces that separate regions with different laminate orientation. We study their shape with a two-dimensional model based on nonlinear elasticity, that contains an explicit parametrization of the needle profiles. Energy minimization leads to specific predictions for the geometry of needle-like domains. Our simulations are based on shape optimization of the needle interfaces, using a polyconvex energy density with cubic symmetry for the elastic problem, and a numerical implementation via finite elements on a dynamically changing grid.
Funder
Humboldt-Universität zu Berlin
Publisher
Springer Science and Business Media LLC
Subject
Mechanics of Materials,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献