Author:
Lai Yurong,Chiang Po-Chang,Blom Jason D,Li Na,Shevlin Kimberly,Brayman Timothy G,Hu Yiding,Selbo Jon G,Hu LiangbiaoGeorge
Abstract
Abstract
In present study, the potential drug delivery of nanoformulations was validated via the comparison of cellular uptake of nanoparticles in various cell lines and in vivo pulmonary cellular uptake in intratracheally (IT) dosed rat model. Nanoparticles were prepared by a bench scale wet milling device and incubated with a series of cell lines, including Caco-2, RAW, MDCK and MDCK transfected MDR1 cells. IT dosed rats were examined for the pulmonary cellular uptake of nanoparticles. The processes of nanoparticle preparation did not alter the crystalline state of the material. The uptake of nanoparticles was observed most extensively in RAW cells and the least in Caco-2 cells. Efflux transporter P-gp did not prevent cell from nanoparticles uptake. The cellular uptake of nanoparticles was also confirmed in bronchoalveolar lavage (BAL) fluid cells and in bronchiolar epithelial cells, type II alveolar epithelial cells in the intratracheally administrated rats. The nanoparticles uptake in MDCK, RAW cells and in vivo lung epithelial cells indicated the potential applications of nanoformulation for poorly soluble compounds. The observed limited direct uptake of nanoparticles in Caco-2 cells suggests that the improvement in oral bioavailability by particle size reduction is via increased dissolution rate rather than direct uptake.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献