Surface Tension and Viscosity of Binary Mixtures of the Fluorinated and Non-fluorinated Ionic Liquids [PFBMIm][PF6] and [C4C1Im][PF6] by the Pendant Drop Method and Surface Light Scattering

Author:

Koller Thomas M.ORCID,Lenahan Frances D.,Schmidt Patrick S.,Klein Tobias,Mehler Julian,Maier Florian,Rausch Michael H.,Wasserscheid Peter,Steinrück Hans-Peter,Fröba Andreas P.

Abstract

AbstractMixtures of fluorinated and non-fluorinated ionic liquids (ILs) show a distinct structural organization in the bulk and at the surface. To understand how such microscopic effects influence the macroscopic bulk and surface properties of IL mixtures, knowledge of corresponding thermophysical properties including viscosity and surface tension is required yet lacking. With the intention of investigating surface enrichment effects of the fluorinated IL [PFBMIm][PF6] (3-methyl-1-(3,3,4,4,4-pentafluorobutyl)imidazolium hexafluorophosphate) in mixtures with the structurally similar, non-fluorinated IL [C4C1Im][PF6] (1-butyl-3-methylimidazolium hexafluorophosphate) observed with angle-resolved X-ray photoelectron spectroscopy (ARXPS), the pendant drop method and surface light scattering (SLS) were applied in the present study to determine surface tension and dynamic viscosity between (293 and 368) K. By adding small amounts of [PFBMIm][PF6] up to 9 mol %, a distinct increase in the viscosity and decrease in the surface tension of the mixtures relative to the properties of pure [C4C1Im][PF6] was found. This behavior reflects the nanosegregated structure in the bulk and at the surface of the binary IL mixtures. Using the results about the pronounced surface enrichment of the fluorinated chain of [PFBMIm][PF6] quantified by ARXPS, a linear mixing rule for the surface tension of the IL mixtures based on the surface tensions of the pure ILs and the surface concentration of their most surface-active groups is suggested.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3