Ionic liquid binary mixtures: Machine learning‐assisted modeling, solvent tailoring, process design, and optimization

Author:

Chen Yuqiu12,Ma Sulei3,Lei Yang3ORCID,Liang Xiaodong2ORCID,Liu Xinyan3ORCID,Kontogeorgis Georgios M.2ORCID,Gani Rafiqul456

Affiliation:

1. Department of Chemical and Biomolecular Engineering University of Delaware Delaware USA

2. Department of Chemical and Biochemical Engineering Technical University of Denmark Lyngby Denmark

3. School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Coal Conversion and New Carbon Materials Wuhan University of Science and Technology Wuhan Hubei China

4. PSE for SPEED Company Charlottenlund Denmark

5. Sustainable Energy and Environment Thrust The Hong Kong University of Science and Technology Guangzhou China

6. Department of Applied Sustainability Széchenyi István University Győr Hungary

Abstract

AbstractThis work conducts a comprehensive modeling study on the viscosity, density, heat capacity, and surface tension of ionic liquid (IL)‐IL binary mixtures by combining the group contribution (GC) method with three machine learning algorithms: artificial neural network, XGBoost, and LightGBM. A large number of experimental data from reliable open sources is exhaustively collected to train, validate, and test the proposed ML‐based GC models. Furthermore, the Shapley Additive Explanations technique is employed to quantify the influential factors behind all the studied properties. Finally, these ML‐based GC models are sequentially integrated into computer‐aided mixed solvent design, process design, and optimization through an industrial case study of recovering hydrogen from raw coke oven gas. Optimization results demonstrate their high computational efficiency and integrability in solvent and process design, while also highlighting the significant potential of IL‐IL binary mixtures in practical applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3