Abstract
Abstract
Background
Calibrating material models to experimental measurements is crucial for realistic computational analysis of components. For complex material models, however, optimization-based identification procedures can become time-consuming, particularly if the optimization problem is ill-posed.
Objective
The objective of this paper is to assess the feasibility of using machine learning to identify the parameters of a Chaboche-type material model that describes copper alloys. Specifically, we apply and analyze this identification approach using short-term uniaxial relaxation tests on a C19010 copper alloy.
Methods
A genetic algorithm forms the basis for identifying the parameters of the Chaboche-type material model. The approach is accelerated by replacing the numerical simulation of the experimental setup by a neural network surrogate. The neural networks-based approach is compared against a classic approach using both, synthetic and experimental data.
Results
The results show that on the one hand, a sufficiently accurate identification of the material model parameters can be achieved by a classic but time-consuming genetic algorithm. On the other hand, it is shown that machine learning enables a much more time-efficient identification procedure, however, suffering from the ill-posedness of the identification problem.
Conclusion
Compared to classic parameter identification approaches, machine learning techniques can significantly accelerate the identification procedure for parameters of Chaboche-type material models with acceptable loss of accuracy.
Funder
AiF Projekt
Fraunhofer-Institut für Werkstoffmechanik IWM
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Bouajila W, Riccius J (2016) Modelling of the cyclic and viscoplastic behavior of a copper-base alloy using Chaboche model. In: Space Propulsion, p 1–7
2. Weber M, Helm D (2018) Prediction of the behaviour of copper alloy components under complex loadings by electro-thermomechanical coupled simulations. Mater Sci Technol 36(8):899–905
3. Eisenbart M, Weber M, Pfeffer K, Dirk H, Klotz U (2018) Standardisierung der mechanischen Charakterisierung und Quantifizierung von Materialkennwerten zur Modellierung des zeitabhängigen Verformungsverhaltens von Halbzeugen aus hochleitfähigen Cu-Legierungen. Forschungsinstitut für Edelmetalle und Metallchemie, Schwäbisch Gmünd, Germany; Fraunhofer Institut für Weckstoffmechanik IWM, Freiburg, Germany. Report from IGF project 18597 N of the AiF Forschungsnetzwerk Mittelstand
4. Mahnken R (2004) Identification of material parameters for constitutive equations. Encyclopedia Comput Mech 2
5. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer Science+Business Media, LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献