Data-Driven Accelerated Parameter Identification for Chaboche-Type Visco-Plastic Material Models to Describe the Relaxation Behavior of Copper Alloys

Author:

Morand L.ORCID,Norouzi E.,Weber M.,Butz A.,Helm D.

Abstract

Abstract Background Calibrating material models to experimental measurements is crucial for realistic computational analysis of components. For complex material models, however, optimization-based identification procedures can become time-consuming, particularly if the optimization problem is ill-posed. Objective The objective of this paper is to assess the feasibility of using machine learning to identify the parameters of a Chaboche-type material model that describes copper alloys. Specifically, we apply and analyze this identification approach using short-term uniaxial relaxation tests on a C19010 copper alloy. Methods A genetic algorithm forms the basis for identifying the parameters of the Chaboche-type material model. The approach is accelerated by replacing the numerical simulation of the experimental setup by a neural network surrogate. The neural networks-based approach is compared against a classic approach using both, synthetic and experimental data. Results The results show that on the one hand, a sufficiently accurate identification of the material model parameters can be achieved by a classic but time-consuming genetic algorithm. On the other hand, it is shown that machine learning enables a much more time-efficient identification procedure, however, suffering from the ill-posedness of the identification problem. Conclusion Compared to classic parameter identification approaches, machine learning techniques can significantly accelerate the identification procedure for parameters of Chaboche-type material models with acceptable loss of accuracy.

Funder

AiF Projekt

Fraunhofer-Institut für Werkstoffmechanik IWM

Publisher

Springer Science and Business Media LLC

Reference44 articles.

1. Bouajila W, Riccius J (2016) Modelling of the cyclic and viscoplastic behavior of a copper-base alloy using Chaboche model. In: Space Propulsion, p 1–7

2. Weber M, Helm D (2018) Prediction of the behaviour of copper alloy components under complex loadings by electro-thermomechanical coupled simulations. Mater Sci Technol 36(8):899–905

3. Eisenbart M, Weber M, Pfeffer K, Dirk H, Klotz U (2018) Standardisierung der mechanischen Charakterisierung und Quantifizierung von Materialkennwerten zur Modellierung des zeitabhängigen Verformungsverhaltens von Halbzeugen aus hochleitfähigen Cu-Legierungen. Forschungsinstitut für Edelmetalle und Metallchemie, Schwäbisch Gmünd, Germany; Fraunhofer Institut für Weckstoffmechanik IWM, Freiburg, Germany. Report from IGF project 18597 N of the AiF Forschungsnetzwerk Mittelstand

4. Mahnken R (2004) Identification of material parameters for constitutive equations. Encyclopedia Comput Mech 2

5. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer Science+Business Media, LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3