The discontinuum of river networks: the importance of geomorphic boundaries

Author:

Scown Murray W.ORCID,Thoms Martin C.ORCID

Abstract

Abstract Context Rivers are heterogeneous landscapes characterised by distinct patches separated by boundaries. The significance of tributaries as dominant geomorphic boundaries in determining the character of the river discontinuum is a prevailing, yet largely unscrutinised, paradigm of river science. Objectives This study examines the spatial organisation and strength of geomorphic boundaries within the river network of 10 drainage basins in the Kimberley region of NW Australia. The possible drivers of the spatial organisation of boundaries throughout the river networks are also identified. Methods Using a suite of GIS tools and statistical analyses, distinct rivers zones or functional process zones (FPZs) and the strength of geomorphic boundaries between these FPZs were empirically determined for > 35,700 km of river network. The spatial distribution of boundary strengths throughout the river network was analysed against a set of environmental variables hypothesised to influence the location of boundaries, specifically: lithology, slope, elevation, and tributary confluences. Results 1410 boundaries were identified in the river network of the Kimberley region, an average of one boundary every 25 km of river. Only 32% of these occurred at river confluences. Transitions between different FPZs – large scale river patches, present in the river network were the dominant geomorphic boundary. Although a range of boundary strengths occurred, some river confluences represented the strongest geomorphic boundaries. The location of geomorphic boundaries was significantly associated with the boundary between different types of lithologies. Conclusion Our analysis shows that the river network of the Kimberley region is naturally highly fragmented, and that tributary confluences are not the dominant control on discontinuities in the river network. We suggest that the character of river network fragmentation depends not only on dams, waterfalls, and confluences, but also on the strength and spatial organisation of geomorphic boundaries between FPZs.

Funder

University of New England

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3