The ecological nature of whole river macrosystems: new perspectives from the riverine ecosystem synthesis

Author:

Thorp James H.,Thoms Martin C.,Delong Michael D.,Maasri Alain

Abstract

Opportunities to understand and protect natural aquatic diversity in both relatively pristine and managed rivers can be enhanced with a comprehensive, system-wide understanding of a river’s hydrogeomorpholgy and its effects on ecological structure and functioning from the river’s headwaters to its terminus in an ocean, lake, or natural endorheic basin. While a moderate number of macrosystem ecology studies have been undertaken recently in headwaters, comparable ecological approaches to studying whole rivers or at least their larger components from upstream to downstream are relatively rare. This is partially correlated with the paucity of applicable river ecosystem models developed over the last half century which could otherwise provide diverse, testable tenets (hypotheses). This manuscript focuses on a 15+ year updated, system-wide analysis of the applicability of the 17 tenets included in our previously published, lotic model - the Riverine Ecosystem Synthesis, or RES. We also propose here four new tenets and analyze the system-wide applicability of the revised RES. Those new tenets hypothesize that: (H-18) “The range and degree of impacts of a Functional Process Zone on biodiversity and ecological processes differ among several factors, including types of FPZs, total river area covered, and dependent variables examined, even in the same river network position”; (H-19) “The degree of ecological differences among types of FPZs vary seasonally with the process being examined while also differing among types of life history characteristics - especially when contrasting responses among seasonal periods of either maximum or minimum growth and reproduction”; (H-20) “The relative importance of in-stream versus watershed drivers of ecological processes in streams can vary within macrosystems and among ecoregions and partially depends on elevation, terrestrial characteristics (natural or human modified), and FPZ type and extent”; and (H-21) “The provision of ecosystem services varies significantly with FPZ type, river size, and location vis-à-vis human populations”. Where appropriate, we also evaluate aspects of several other models published by colleagues that pertain to river ecology.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3