Rethinking connectivity modeling for high-mobility ungulates: insights from a globally endangered equid

Author:

Rezvani Azita,Hemami Mahmoud-Reza,Goheen Jacob R.,Kaczensky Petra,Pourmanafi Saeid,Fakheran Sima,Esmaeili Saeideh

Abstract

Abstract Context Maintaining connectivity is crucial for wildlife conservation in human-occupied landscapes. Structural connectivity modeling (SCM) attempts to quantify the degree to which physical features facilitate or impede movement of individuals and has been widely used to identify corridors, but its accuracy is rarely validated against empirical data. Objectives We evaluated SCM’s ability to identify suitable habitat and corridors for onagers (Equus hemionus onager) through a comparison with functional connectivity (i.e., actual movement of individuals) using satellite tracking data. Methods We used MaxEnt to predict suitable habitat and evaluated the ability of three SCM approaches: circuit theory, factorial least cost path, and landscape corridors approaches to identify corridors. The performance of the three SCM approaches was validated against independently collected GPS telemetry data. Results Onagers selected water sources and dense vegetation while avoiding areas grazed intensely by livestock. The three approaches to SCMs identified similar movement corridors, which were interrupted by roads, affecting major high-flow movement corridors. The SCMs overlapped with functional connectivity by about 21%. Conclusion Movement corridors derived from SCMs did not align with the locations or intensity of corridors identified using the functional connectivity model. This finding suggests that SCMs might have a tendency to overestimate landscape resistance in areas with low habitat suitability. Therefore, SCM may not adequately capture individual decisions about habitat selection and movement. To protect corridors linking suitable habitat, data on functional connectivity (i.e., telemetry data) can be coupled with SCM to better understand habitat selection and movements of populations as a consequence of landscape features.

Funder

Iranian Department of Environment, and Mohamed Bin Zayed Species Conservation Fund

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3