A simple metric of landscape fire exposure

Author:

Beverly Jennifer L.ORCID,McLoughlin Neal,Chapman Elizabeth

Abstract

Abstract Context Proximity of landcover elements to each other will enable or constrain fire spread. Assessments of potential fire propagation across landscapes typically involve empirical or simulation models that estimate probabilities based on complex interactions among biotic and abiotic controls. Objectives We developed a metric of landscape fire exposure based solely on a grid cell’s proximity to nearby hazardous fuel capable of transmitting fire to its location. To evaluate accuracy of this new metric, we asked: Do burned areas occur preferentially in locations with high exposure? Methods We mapped exposure to hazardous fuels in Alberta, Canada using a neighbourhood analysis. Correspondence between exposure and 2331 fires that burned 2,606,387 ha following our 2007 assessment was evaluated and exposure changes between 2007 and 2019 were assessed. Results In all eleven ecological units analysed, burned area surpluses occurred where exposure was ≥ 60% and corresponding deficits occurred where exposure was < 40%. In seven ecological units, the majority of burned areas had pre-fire exposure ≥ 80%. Between 2007 and 2019, land area with exposure ≥ 80% increased by almost a third. Conclusions Exposure to hazardous fuels is easily quantified with a single thematic layer and aligns well with subsequent fires in Boreal, Foothills and Rocky Mountain natural regions. The resulting fire exposure metric is a numeric rating of the potential for fire transmission to a location given surrounding fuel composition and configuration, irrespective of weather or other fire controls. Exposure can be compared across geographic regions and time periods; and used in conjunction with other metrics of fire controls to inform the study of landscape fire.

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Geography, Planning and Development

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3