Individual tree detection and classification from RGB satellite imagery with applications to wildfire fuel mapping and exposure assessments

Author:

Bennett L.ORCID,Yu Z.,Wasowski R.,Selland S.,Otway S.,Boisvert J.

Abstract

Background Wildfire fuels are commonly mapped via manual interpretation of aerial photos. Alternatively, RGB satellite imagery offers data across large spatial extents. A method of individual tree detection and classification is developed with implications to fuel mapping and community wildfire exposure assessments. Methods Convolutional neural networks are trained using a novel generational training process to detect trees in 0.50 m/px RGB imagery collected in Rocky Mountain and Boreal natural regions in Alberta, Canada by Pleiades-1 and WorldView-2 satellites. The workflow classifies detected trees as ‘green-in-winter’/‘brown-in-winter’, a proxy for coniferous/deciduous, respectively. Key results A k-fold testing procedure compares algorithm detections to manual tree identification densities reaching an R2 of 0.82. The generational training process increased achieved R2 by 0.23. To assess classification accuracy, satellite detections are compared to manual annotations of 2 cm/px drone imagery resulting in average F1 scores of 0.85 and 0.82 for coniferous and deciduous trees respectively. The use of model outputs in tree density mapping and community-scale wildfire exposure assessments is demonstrated. Conclusion & Implications The proposed workflow automates fine-scale overstorey tree mapping anywhere seasonal (winter and summer) 0.50 m/px RGB satellite imagery exists. Further development could enable the extraction of additional properties to inform a more complete fuel map.

Publisher

CSIRO Publishing

Reference47 articles.

1. A large-scale dataset and deep learning model for detecting and counting olive trees in satellite imagery.;Computational Intelligence and Neuroscience,2022

2. Agisoft (2023) Agisoft Metashape Professional. Available at

3. Occurrence, area burned, and seasonality trends of forest fires in the Natural Subregions of Alberta over 1959–2021.;Fire,2023

4. Airbus Defense and Space Intelligence (2012) Pléiades. Airbus. (Taufkirchen: Germany). Available at

5. Alberta Sustainable Resource Development (2007) ‘R11 Forest Management Plan.’ (Rocky Mountain House: Alberta, Canada)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3