Climate change, habitat connectivity, and conservation gaps: a case study of four ungulate species endemic to the Tibetan Plateau

Author:

Liang JianchaoORCID,Ding Zhifeng,Jiang Zhigang,Yang Xiaojun,Xiao Rongbo,Singh Paras Bikram,Hu Yiming,Guo Keji,Zhang Zhixiang,Hu Huijian

Abstract

Abstract Context Habitat connectivity is essential for the long-term persistence of species, but is commonly disregarded in climate change impact studies. The Tibetan Plateau contains a biome rich in endemic ungulates, which are highly sensitive to climatic variations and deserve particular attention in conservation planning against climate change. Objectives We evaluated the response and vulnerability of habitat connectivity to climate change for four ungulate species endemic to the Tibetan Plateau, and examined the robustness of protected areas (PAs) for the conservation of these species under climate change. Methods For each focal species, we developed ecological niche models to predict the spatial variations in habitat under climate change and conducted a network-theoretical analysis to estimate the consequent changes in habitat connectivity. Moreover, we used the circuit theory to characterize dispersal patterns of these species and conducted gap analyses to estimate the contribution of existing PAs to the conservation of these species. Results The four focal species will experience a remarkable connectivity loss that outpaced their habitat loss in response to climate change. Currently, 53.39 and 46.64% of the areas that could contribute to the habitat suitability and connectivity, respectively, of these species are unprotected. These values could further increase under future climate conditions. Conclusions Climate-driven habitat variations may lead to the loss of key connectivity areas between the habitats of ungulates, causing disproportionate decrease in habitat connectivity. The existing PAs on the Tibetan Plateau are not robust for the conservation of the four ungulates. Adjustment of certain key PAs may help to address the conservation gaps.

Funder

National Natural Science Foundation of China

Training Fund of Guangdong Institute of Applied Biological Resources for PhDs, Masters and Postdoctoral Researchers

GDAS’ Project of Science and Technology Development

Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China

GDAS’ Special Project of Science and Technology Development

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3