Comparison and parallel implementation of alternative moving-window metrics of the connectivity of protected areas across large landscapes

Author:

Hughes JosieORCID,Lucet ValentinORCID,Barrett Griffin,Moran Scott,Manseau MichelineORCID,Martin Amanda E.ORCID,Naujokaitis-Lewis IlonaORCID,Negrín Dastis Jorge OctavioORCID,Pither RichardORCID

Abstract

AbstractContextA variety of metrics can be used to measure connectivity of protected areas. Assumptions about animal movement and mortality vary among metrics. There is a need to better understand what to use and why, and how much conclusions depend on the choice of metric.ObjectivesWe compare selected raster-based moving-window metrics for assessing the connectivity of protected areas to natural habitat in the surrounding area, and develop tools to facilitate calculation of these metrics for large landscapes.MethodsWe developed parallel implementations of distance-weighted sum and Spatial Absorbing Markov Chain methods in R packages to improve their useability for large landscapes. We investigated correlations among metrics for Canadian protected areas, varying background mortality, cost of movement, mean displacement, dispersal kernel shape, distance measure used, and the treatment of natural barriers such as water, ice, and steep slopes.ResultsAt smaller spatial scales (2–5 km mean displacement), correlations among metric variants are high, suggesting that any of the metrics we investigated will give similar results and simple metrics will suffice. Differences among metrics are most evident at larger spatial scales (20–40 km mean displacement) in moderately disturbed regions. Assumptions about the impact of natural barriers have a large impact on outcomes.ConclusionIn some circumstances different metrics give similar results, and simple distance-weighted metrics likely suffice. At large spatial scales in moderately disturbed regions there is less agreement among metrics, implying that more detailed information about disperser distribution, behaviour, and mortality risk is required for assessing connectivity.

Funder

Environment and Climate Change Canada

Environment & Climate Change Canada

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3