Abstract
AbstractAs augmented reality technologies develop, real-time interactions between objects present in the real world and virtual space are required. Generally, recognition and location estimation in augmented reality are carried out using tracking techniques, typically markers. However, using markers creates spatial constraints in simultaneous tracking of space and objects. Therefore, we propose a system that enables camera tracking in the real world and visualizes virtual visual information through the recognition and positioning of objects. We scanned the space using an RGB-D camera. A three-dimensional (3D) dense point cloud map is created using point clouds generated through video images. Among the generated point cloud information, objects are detected and retrieved based on the pre-learned data. Finally, using the predicted pose of the detected objects, other information may be augmented. Our system estimates object recognition and 3D pose based on simple camera information, enabling the viewing of virtual visual information based on object location.
Funder
Institute for Information and Communications Technology Promotion
Chung-Ang University
Publisher
Springer Science and Business Media LLC
Subject
Hardware and Architecture,Information Systems,Theoretical Computer Science,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献