Approximate bilateral filters for real-time and low-energy imaging applications on FPGAs

Author:

Spagnolo Fanny,Corsonello Pasquale,Frustaci Fabio,Perri Stefania

Abstract

AbstractBilateral filtering is an image processing technique commonly adopted as intermediate step of several computer vision tasks. Opposite to the conventional image filtering, which is based on convolving the input pixels with a static kernel, the bilateral filtering computes its weights on the fly according to the current pixel values and some tuning parameters. Such additional elaborations involve nonlinear weighted averaging operations, which make difficult the deployment of bilateral filtering within existing vision technologies based on real-time and low-energy hardware architectures. This paper presents a new approximation strategy that aims to improve the energy efficiency of circuits implementing the bilateral filtering function, while preserving their real-time performances and elaboration accuracy. In contrast to the state-of-the-art, the proposed technique allows the filtering action to be on the fly adapted to both the current pixel values and to the tuning parameters, thus avoiding any architectural modification or tables update. When hardware implemented within the Xilinx Zynq XC7Z020 FPGA device, a 5 × 5 filter based on the proposed method processes 237.6 Mega pixels per second and consumes just 0.92 nJ per pixel, thus improving the energy efficiency by up to 2.8 times over the competitors. The impact of the proposed approximation on three different imaging applications has been also evaluated. Experiments demonstrate reasonable accuracy penalties over the accurate counterparts.

Funder

PON Ricerca & Innovazione – Ministero dell'Università e della Ricerca

ICSC National Research Centre for High Performance Computing, Big Data and Quantum Computing

Università della Calabria

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3