Robust adversarial uncertainty quantification for deep learning fine-tuning

Author:

Ahmed Usman,Lin Jerry Chun-Wei

Abstract

AbstractThis paper proposes a deep learning model that is robust and capable of handling highly uncertain inputs. The model is divided into three phases: creating a dataset, creating a neural network based on the dataset, and retraining the neural network to handle unpredictable inputs. The model utilizes entropy values and a non-dominant sorting algorithm to identify the candidate with the highest entropy value from the dataset. This is followed by merging the training set with adversarial samples, where a mini-batch of the merged dataset is used to update the dense network parameters. This method can improve the performance of machine learning models, categorization of radiographic images, risk of misdiagnosis in medical imaging, and accuracy of medical diagnoses. To evaluate the efficacy of the proposed model, two datasets, MNIST and COVID, were used with pixel values and without transfer learning. The results showed an increase of accuracy from 0.85 to 0.88 for MNIST and from 0.83 to 0.85 for COVID, which suggests that the model successfully classified images from both datasets without using transfer learning techniques.

Funder

Western Norway University Of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3