1. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence N, Weinberger KQ (eds) Advances in Neural Information Processing Systems, vol 27. Curran Associates, Inc., Palais des Congrés de Montréal, Montréal. https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
2. Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: Bengio Y, LeCun Y (eds) 4th International Conference on Learning Representations, ICLR 2016, Conference Track Proceedings, San Juan, Puerto Rico, May 2–4, 2016. http://arxiv.org/abs/1511.06434
3. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for training GANs. In: Lee D, Sugiyama M, Luxburg U, Guyon I, Garnett R (eds) Advances in Neural Information Processing Systems (NIPS'16), vol 29, Centre Convencions Internacional Barcelona, Barcelona, Spain. December 5-10, 2016. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
4. Bertsekas D (2021) Multiagent rollout algorithms and reinforcement learning. IEEE/CAA J. Autom. Sinica 8(2):249–272. https://doi.org/10.1109/JAS.2021.1003814https://www.ieee-jas.net/en/article/doi/10.1109/JAS.2021.1003814
5. Mertikopoulos P, Papadimitriou C, Piliouras G (2018) Cycles in adversarial regularized learning. In: Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp 2703–2717. https://doi.org/10.1137/1.9781611975031.172. https://epubs.siam.org/doi/abs/10.1137/1.9781611975031.172