Personalized agricultural knowledge services: a framework for privacy-protected user portraits and efficient recommendation

Author:

Wu Huarui,Liu Chang,Zhao Chunjiang

Abstract

AbstractIn recent years, the increasing demand for knowledge services and the challenges of information overload have posed significant problems in delivering personalized and efficient agricultural knowledge services. This paper presents a comprehensive framework that addresses the issues of vague user positioning, serious privacy leakage, and low efficiency in personalized knowledge services within the national agricultural knowledge intelligent service cloud platform. The proposed framework utilizes privacy-protected user portraits based on generative adversarial nets (GAN) and leverages the TextCNN-LSTM algorithm for agricultural knowledge service prediction. By embedding labels into the algorithm and employing data obfuscation techniques, the framework achieves accurate inference of user behavior while preserving user privacy. Experimental results demonstrate the effectiveness and accuracy of the proposed framework, highlighting its potential for regional precise positioning and recommendation of personalized agricultural knowledge services. Experimental data shows that the average absolute error and root-mean-square error of this method are 1.1997 and 1.4143, respectively, and compared with MLP, TextCNN, and LSTM models, and it has higher prediction accuracy. In recent years, the increasing demand for knowledge services and the challenges of information overload have posed significant problems in delivering personalized and efficient agricultural knowledge services.

Funder

China Agriculture Research System of MOF and MARA Grant

Science and Technology Innovation 2030—“New Generation Artificial Intelligence” Major Project

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3