An efficient implementation of one-dimensional discrete wavelet transform algorithms for GPU architectures

Author:

Stokfiszewski KamilORCID,Wieloch Kamil,Yatsymirskyy Mykhaylo

Abstract

AbstractIn this paper, the authors present several self-developed implementation variants of the Discrete Wavelet Transform (DWT) computation algorithms and compare their execution times against the commonly approved ones for representative modern Graphics Processing Units (GPUs) architectures. The proposed solutions avoid the time-consuming modulo divisions and conditional instructions used for DWT filters wrapping by proper expansion of the DWTs input data vectors. The main goal of the research is to improve the computation times for popular DWT algorithms for representative modern GPU architectures while retaining the code’s clarity and simplicity. The relations between algorithms execution time improvements for GPUs are also compared with their counterparts for traditional sequential processors. The experimental study shows that the proposed implementations, in the case of parallel realization on GPUs, are characterized by very simple kernel code and high execution time performance.

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Reference40 articles.

1. Porwik P (2015) Wybrane metody cyfrowego przetwarzania sygnalow z przykladami programow w Matlabie. Wydawnictwo Uniwersytetu Slaskiego, Katowice

2. Sorensen H (2012) “High-Performance Matrix-Vector Multiplication on the GPU”, M. Alexander et al. (Eds) Euro-Par 2011 Parallel Processing Workshops, Lecture Notes in Computer Science, vol 7155. Springer, Berlin, Heidelberg

3. Yatsymirskyy M, Stokfiszewski K (2012) “Effectiveness of lattice factorization of two-channel orthogonal filter banks”, 2012 Joint Conference New Trends In Audio, Video And Signal Processing: Algorithms. Architectures, Arrangements And Applications (NTAV/SPA), pp 275–279

4. Sanders J, Kandrot E (2010) CUDA by example: an introduction to general-purpose GPU programming. Addison-Wesley Professional, USA (ISBN: 978-0-13-138768-3)

5. Cheng J, Grossman M, McKercher T (2014) Professional CUDA C programming. John Wiley & Sons, Inc., Indianapolis (ISBN: 978-1-118-73932-7)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3