Excess enthalpy of mixing of mineral solid solutions derived from density-functional calculations

Author:

Benisek ArturORCID,Dachs Edgar

Abstract

AbstractCalculations using the density-functional theory (DFT) in combination with the single defect method were carried out to determine the heat of mixing behaviour of mineral solid solution phases. The accuracy of this method was tested on the halite–sylvite (NaCl–KCl) binary, pyrope–grossular garnets (Mg3Al2Si3O12–Ca3Al2Si3O12), MgO–CaO (halite structure) binary, and on Al/Si ordered alkali feldspars (NaAlSi3O8–KAlSi3O8); as members for coupled substitutions, the diopside–jadeite pyroxenes (CaMgSi2O6–NaAlSi2O6) and diopside–CaTs pyroxenes (CaMgSi2O6–CaAlAlSiO6) were chosen for testing and, as an application, the heat of mixing of the tremolite–glaucophane amphiboles (Ca2Mg5Si8O22(OH)2–Na2Mg3Al2Si8O22(OH)2) was computed. Six of these binaries were selected because of their experimentally well-known thermodynamic mixing behaviours. The comparison of the calculated heat of mixing data with calorimetric data showed good agreement for halite–sylvite, pyrope–grossular, and diopside–jadeite binaries and small differences for the Al/Si ordered alkali feldspar solid solution. In the case of the diopside–CaTs binary, the situation is more complex because CaTs is an endmember with disordered cation distributions. Good agreement with the experimental data could be, however, achieved assuming a reasonable disordered state. The calculated data for the Al/Si ordered alkali feldspars were applied to phase equilibrium calculations, i.e. calculating the Al/Si ordered alkali feldspar solvus. This solvus was then compared to the experimentally determined solvus finding good agreement. The solvus of the MgO–CaO binary was also constructed from DFT-based data and compared to the experimentally determined solvus, and the two were also in good agreement. Another application was the determination of the solvus in tremolite–glaucophane amphiboles (Ca2Mg5Si8O22(OH)2–Na2Mg3Al2Si8O22(OH)2). It was compared to solvi based on coexisting amphiboles found in eclogites and phase equilibrium experiments.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3