A new activity model for Fe–Mg–Al biotites: I—Derivation and calibration of mixing parameters

Author:

Dachs EdgarORCID,Benisek ArturORCID

Abstract

AbstractA new activity model for Fe–Mg–Al biotites is formulated, which extends that of Mg–Al biotites (Dachs and Benisek, Contrib Mineral Petrol 174:76, 2019) to the K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) system. It has the two composition variables XMg = Mg/(Mg + Fe2+) and octahedral Al, and Fe–Mg and Mg–Al ordering variables resulting in five linearly independent endmembers: annite (Ann, K[Fe]M1[Fe]2M2[Al0.5Si0.5]2T1[Si]2T2O10(OH)2, phlogopite (Phl, K[Mg]M1[Mg]2M2[Al0.5Si0.5]2T1[Si]2T2O10(OH)2, ordered Fe–Mg biotite (Obi, K[Fe]M1[Mg]2M2[Al0.5Si0.5]2T1[Si]2T2O10(OH)2, ordered eastonite (Eas, K[Al]M1[Mg]2M2[Al]2T1[Si]2T2O10(OH)2, and disordered eastonite (Easd, K[Al1/3Mg2/3]M1[Al1/3Mg2/3]2M2[Al]2T1[Si]2T2O10(OH)2. The methods applied to parameterize the mixing properties of the model were: calorimetry, analysis of existing phase-equilibrium data, line-broadening in powder absorption infrared (IR) spectra, and density functional theory (DFT) calculations. For the calorimetric study, various biotite compositions along the annite–phlogopite, annite–siderophyllite (Sid, K[Al]M1[Fe]2M2[Al]2T1[Si]2T2O10(OH)2), and annite–eastonite joins were synthesized hydrothermally at 700 °C, 4 kbar and logfO2 of around − 20.2, close to the redox conditions of the wüstite–magnetite oxygen buffer at that PT conditions. The samples were characterised by X-ray powder diffraction (XRPD), energy-dispersive scanning electron microprobe analysis, powder absorption IR spectroscopy, and optical microscopy. The samples were studied further using relaxation calorimetry to measure their heat capacities (Cp) at temperatures from 2 to 300 K. The measured Cp/T was then integrated to get the calorimetric (vibrational) entropies of the samples at 298.15 K. These show linear behaviour when plotted as a function of composition for all three binaries. Excess entropies of mixing are thus zero for the important biotite joins. Excess volumes of mixing are also zero within error for the three binaries Phl-Ann, Ann-Sid, and Ann-Eas. KFMASH biotite, therefore, has excess enthalpies which are independent of pressure and temperature (WGij = WHij). A least-squares procedure was applied in the thermodynamic analysis of published experimental data on the Fe–Mg exchange between biotite and olivine, combined with phase-equilibrium data for phlogopite + quartz stability and experimental data for the Al-saturation level of biotite in the assemblage biotite–sillimanite–sanidine–quartz–H2O to constrain enthalpic mixing parameters and to derive enthalpy of formation values for biotite endmembers. For Fe–Mg mixing in biotite, the most important binary, this gave best-fit asymmetric Margules enthalpy parameters of WHAnnPhl = 14.3 ± 3.4 kJ/mol and WHPhlAnn = −8.8 ± 8.0 kJ/mol (3-cation basis). The resulting asymmetric molar excess Gibbs free energy (Gex) departs only slightly from ideality and is negative at Fe-rich and positive at Mg-rich compositions. Near-ideal activity–composition relationships are thus indicated for the Ann–Phl binary. The presently used low value of − 2 kJ/mol for the enthalpy change of the reaction 2/3 Phl + 1/3 Ann = Obi is generally confirmed by DFT calculations that gave − 2 ± 3 kJ/mol for this ∆HFe–Mg order, indicating that Fe–Mg ordering in biotite is weak. The large enthalpy change of ∆HMg-Al disorder = 34.5 kJ/mol for the disordering of Mg and Al on the M sites in Eas (Dachs and Benisek 2019) is reconfirmed by additional DFT calculations. In combination with WHPhlEas = 10 kJ/mol, which is the preferred value of this study describing mixing along the Phl–Eas join, Mg–Al disordering over the M sites of biotite is predicted to be only significant at high temperatures > 1000 °C. In contrast, it plays no role in metamorphic PT settings.

Funder

Austrian Science Fund

Paris Lodron University of Salzburg

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3