Using citizen science data to investigate annual survival rates of resident birds in relation to noise and light pollution

Author:

Pharr Lauren D.,Cooper Caren B.ORCID,Evans Brian,Moorman Christopher E.,Voss Margaret A.,Vukomanovic Jelena,Marra Peter P.

Abstract

AbstractExponential increases in anthropogenic noise and light pollution have accompanied growth of the built environment. Noise and light cause negative consequences for birds, such as disrupted navigation during migration, mortality from collisions with windows and other infrastructure, and reduced reproductive success, as well as some positive consequences, such as expanded night niches for behaviors associated with feeding, territoriality, and mating. Relatively less is known about noise and light effects on annual survival of non-migratory birds, so we conducted an exploratory study to examine variation in adult survival rates of seven avian species in relation to noise and light pollution. We used 20 years of band-resight data collected as a part of the Neighborhood Nestwatch Program (NN), a citizen science project run by the Smithsonian Migratory Bird Center, at 242 sites in greater Washington, D.C. USA. We estimated apparent survival and documented species-specific relationships with light and noise. Gray Catbird (Dumetella carolinensis) and House Wren (Thryothorus aedon) survival decreased and American Robin (Turdus migratorius) survival increased with greater amounts of anthropogenic light. Anthropogenic noise had no relationship with apparent survival for any of the seven species. Life-history trade-offs between survival and reproduction may account for differences in species-specific effects of light pollution. Future research should examine the availability of other fine scale environmental conditions, such as tree canopy cover, that might buffer avian exposure to noise and light pollution.

Publisher

Springer Science and Business Media LLC

Subject

Urban Studies,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3