A local community on a global collective intelligence platform: A case study of individual preferences and collective bias in ecological citizen science

Author:

Arazy OferORCID,Kaplan-Mintz Keren,Malkinson Dan,Nagar Yiftach

Abstract

The collective intelligence of crowds could potentially be harnessed to address global challenges, such as biodiversity loss and species’ extinction. For wisdom to emerge from the crowd, certain conditions are required. Importantly, the crowd should be diverse and people’s contributions should be independent of one another. Here we investigate a global citizen-science platform—iNaturalist—on which citizens report on wildlife observations, collectively producing maps of species’ spatiotemporal distribution. The organization of global platforms such as iNaturalist around local projects compromises the assumption of diversity and independence, and thus raises concerns regarding the quality of such collectively-generated data. We spent four years closely immersing ourselves in a local community of citizen scientists who reported their wildlife sightings on iNaturalist. Our ethnographic study involved the use of questionnaires, interviews, and analysis of archival materials. Our analysis revealed observers’ nuanced considerations as they chose where, when, and what type of species to monitor, and which observations to report. Following a thematic analysis of the data, we organized observers’ preferences and constraints into four main categories: recordability, community value, personal preferences, and convenience. We show that while some individual partialities can “cancel each other out”, others are commonly shared among members of the community, potentially biasing the aggregate database of observations. Our discussion draws attention to the way in which widely-shared individual preferences might manifest as spatial, temporal, and crucially, taxonomic biases in the collectively-created database. We offer avenues for continued research that will help better understand—and tackle—individual preferences, with the goal of attenuating collective bias in data, and facilitating the generation of reliable state-of-nature reports. Finally, we offer insights into the broader literature on biases in collective intelligence systems.

Funder

Data Science Research Center (DSRC), University of Haifa

Publisher

Public Library of Science (PLoS)

Reference189 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3