Abstract
Abstract
Hadronic matrix elements involving tensor currents play an important rôle in decays that allow to probe the consistency of the Standard Model via precision lattice QCD calculations. The non-singlet tensor current is a scale-dependent (anomalous) quantity. We fully resolve its renormalisation group (RG) running in the continuum by carrying out a recursive finite-size scaling technique. In this way ambiguities due to a perturbative RG running and matching to lattice data at low energies are eliminated. We provide the total renormalisation factor at a hadronic scale of 233 MeV, which converts the bare current into its RG-invariant form.Our calculation features three flavours of O(a) improved Wilson fermions and tree-level Symanzik-improved gauge action. We employ the (massless) Schrödinger functional renormalisation scheme throughout and present the first non-perturbative determination of the Symanzik counterterm cT derived from an axial Ward identity. We elaborate on various details of our calculations, including two different renormalisation conditions.
Publisher
Springer Science and Business Media LLC
Reference105 articles.
1. G. Buchalla et al., B, D and K decays, Eur. Phys. J. C 57 (2008) 309 [arXiv:0801.1833] [INSPIRE].
2. M. Antonelli et al., Flavor Physics in the Quark Sector, Phys. Rept. 494 (2010) 197 [arXiv:0907.5386] [INSPIRE].
3. A. Bharucha, D.M. Straub and R. Zwicky, B → Vℓ+ℓ− in the Standard Model from light-cone sum rules, JHEP 08 (2016) 098 [arXiv:1503.05534] [INSPIRE].
4. T. Blake, G. Lanfranchi and D.M. Straub, Rare B Decays as Tests of the Standard Model, Prog. Part. Nucl. Phys. 92 (2017) 50 [arXiv:1606.00916] [INSPIRE].
5. A. Cerri et al., Report from Working Group 4: Opportunities in Flavour Physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7 (2019) 867 [arXiv:1812.07638] [INSPIRE].