Generating functions and large-charge expansion of integrated correlators in 𝒩 = 4 supersymmetric Yang-Mills theory

Author:

Brown AugustusORCID,Wen CongkaoORCID,Xie HaitianORCID

Abstract

Abstract We recently proved that, when integrating out the spacetime dependence with a certain integration measure, four-point correlators $$ \left\langle {\mathcal{O}}_2{\mathcal{O}}_2{\mathcal{O}}_p^{(i)}{\mathcal{O}}_p^{(i)}\right\rangle $$ O 2 O 2 O p i O p i in 𝒩 = 4 supersymmetric Yang-Mills theory with SU(N) gauge group are governed by a universal Laplace-difference equation. Here $$ {\mathcal{O}}_p^{(i)} $$ O p i is a superconformal primary with charge p and degeneracy i. These physical observables, called integrated correlators, are modular-invariant functions of Yang-Mills coupling τ. The Laplace-difference equation is a recursion relation that relates integrated correlators of operators with different charges. In this paper, we introduce the generating functions for these integrated correlators that sum over the charge. By utilising the Laplace-difference equation, we determine the generating functions for all the integrated correlators, in terms of the initial data of the recursion relation. We show that the transseries of the integrated correlators in the large-p (i.e. large-charge) expansion for a fixed N consists of three parts: 1) is independent of τ, which behaves as a power series in 1/p, plus an additional log(p) term when i = j; 2) is a power series in 1/p, with coefficients given by a sum of the non-holomorphic Eisenstein series; 3) is a sum of exponentially decayed modular functions in the large-p limit, which can be viewed as a generalisation of the non-holomorphic Eisenstein series. When i = j, there is an additional modular function of τ that is independent of p and is fully determined in terms of the integrated correlator with p = 2. The Laplace-difference equation was obtained with a reorganisation of the operators that means the large-charge limit is taken in a particular way here. From these SL(2, ℤ)-invariant results, we also determine the generalised ’t Hooft genus expansion and the associated large-p non-perturbative corrections of the integrated correlators by introducing λ = p$$ {g}_{YM}^2 $$ g YM 2 . The generating functions have subtle differences between even and odd N, which have important consequences in the large-charge expansion and resurgence analysis. We also consider the generating functions of the integrated correlators for some fixed p by summing over N, and we study their large-N behaviour, as well as comment on the similarities and differences between the large-p expansion and the large-N expansion.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3