Exact properties of an integrated correlator in $$ \mathcal{N} $$ = 4 SU(N) SYM

Author:

Dorigoni Daniele,Green Michael B.,Wen CongkaoORCID

Abstract

Abstract We present a novel expression for an integrated correlation function of four superconformal primaries in SU(N) $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills ($$ \mathcal{N} $$ N = 4 SYM) theory. This integrated correlator, which is based on supersymmetric localisation, has been the subject of several recent developments. In this paper the correlator is re-expressed as a sum over a two dimensional lattice that is valid for all N and all values of the complex Yang-Mills coupling $$ \tau =\theta /2\pi +4\pi i/{g}_{\mathrm{YM}}^2 $$ τ = θ / 2 π + 4 πi / g YM 2 . In this form it is manifestly invariant under SL(2, ℤ) Montonen-Olive duality. Furthermore, it satisfies a remarkable Laplace-difference equation that relates the SU(N) correlator to the SU(N + 1) and SU(N − 1) correlators. For any fixed value of N the correlator can be expressed as an infinite series of non-holomorphic Eisenstein series, $$ E\left(s;\tau, \overline{\tau}\right) $$ E s τ τ ¯ with s ∈ ℤ, and rational coefficients that depend on the values of N and s. The perturbative expansion of the integrated correlator is an asymptotic but Borel summable series, in which the n-loop coefficient of order (gYM/π)2n is a rational multiple of ζ(2n + 1). The n = 1 and n = 2 terms agree precisely with results determined directly by integrating the expressions in one-loop and two-loop perturbative $$ \mathcal{N} $$ N = 4 SYM field theory. Likewise, the charge-k instanton contributions (|k| = 1, 2, . . .) have an asymptotic, but Borel summable, series of perturbative corrections. The large-N expansion of the correlator with fixed τ is a series in powers of $$ {N}^{\frac{1}{2}-\mathrm{\ell}} $$ N 1 2 ( ∈ ℤ) with coefficients that are rational sums of $$ E\left(s;\tau, \overline{\tau}\right) $$ E s τ τ ¯ with s ∈ ℤ + 1/2. This gives an all orders derivation of the form of the recently conjectured expansion. We further consider the ’t Hooft topological expansion of large-N Yang-Mills theory in which $$ \lambda ={g}_{\mathrm{YM}}^2N $$ λ = g YM 2 N is fixed. The coefficient of each order in the 1/N expansion can be expanded as a series of powers of λ that converges for |λ| < π2. For large λ this becomes an asymptotic series when expanded in powers of $$ 1/\sqrt{\lambda } $$ 1 / λ with coefficients that are again rational multiples of odd zeta values, in agreement with earlier results and providing new ones. We demonstrate that the large-λ series is not Borel summable, and determine its resurgent non-perturbative completion, which is $$ O\left(\exp \left(-2\sqrt{\lambda}\right)\right) $$ O exp 2 λ .

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3