Higgs coupling measurements and the scale of new physics

Author:

Abu-Ajamieh Fayez,Chang SpencerORCID,Chen Miranda,Luty Markus A.

Abstract

Abstract A primary goal of present and future colliders is measuring the Higgs couplings to Standard Model (SM) particles. Any observed deviation from the SM predictions for these couplings is a sign of new physics whose energy scale can be bounded from above by requiring tree-level unitarity. In this paper, we extend previous work on unitarity bounds from the Higgs cubic coupling to Higgs couplings to vector bosons and top quarks. We find that HL-LHC measurements of these couplings compatible with current experimental bounds may point to a scale that can be explored at the HL-LHC or a next-generation collider. Our approach is completely model-independent: we assume only that there are no light degrees of freedom below the scale of new physics, and allow arbitrary values for the infinitely many couplings beyond the SM as long as they are in agreement with current measurements. We also extend and clarify the methodology of this analysis, and show that if the scale of new physics is above the TeV scale, then the deviations can be described by the leading higher-dimension gauge invariant operator, as in the SM effective field theory.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Primary observables for gauge boson collider signals;Physical Review D;2024-04-29

2. Effective field theories as Lagrange spaces;Journal of High Energy Physics;2023-11-13

3. Perturbative unitarity constraints on generic vector interactions;Journal of High Energy Physics;2023-09-20

4. Higgs–Higgs scattering and the (non-)existence of the Higgsonium;The European Physical Journal C;2023-08-09

5. Can the Higgs still account for the g−2 anomaly?;International Journal of Modern Physics A;2023-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3