Abstract
Abstract
We present a formulation of scalar effective field theories in terms of the geometry of Lagrange spaces. The horizontal geometry of the Lagrange space generalizes the Riemannian geometry on the scalar field manifold, inducing a broad class of affine connections that can be used to covariantly express and simplify tree-level scattering amplitudes. Meanwhile, the vertical geometry of the Lagrange space characterizes the physical validity of the effective field theory, as a torsion component comprises strictly higher-point Wilson coefficients. Imposing analyticity, unitarity, and symmetry on the theory then constrains the signs and sizes of derivatives of the torsion component, implying that physical theories correspond to a special class of vertical geometry.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On amplitudes and field redefinitions;Journal of High Energy Physics;2024-06-24
2. Soft scalars in effective field theory;Journal of High Energy Physics;2024-06-19
3. Effective Field Theories on the Jet Bundle;Physical Review Letters;2024-02-08