Abstract
Abstract
The spin supplementary conditions are constraints on spin degrees of freedom in classical relativity which restricts physical degrees of freedom to rotations. It is argued that the equivalent constraints in quantum field theory are the projection conditions on polarisation tensors, which remove timelike/longitudinal polarisations from the physical spectrum. The claim is supported by three examples of massive spinning particles coupled to electromagnetism: Dirac and Proca fields in quantum field theory, and 𝒩 = 1 worldline QFT for classical worldline theory. This suggests a resolution to the apparent discrepancy between effective field theory description of massive higher-spin fields [1, 2] and post-Newtonian effective field theory of spinning classical particles [3], where the former admits more unfixed parameters compared to the latter; the additional parameters are fixed by projection conditions and therefore are not tunable parameters.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference111 articles.
1. Z. Bern et al., Spinning black hole binary dynamics, scattering amplitudes, and effective field theory, Phys. Rev. D 104 (2021) 065014 [arXiv:2005.03071] [INSPIRE].
2. Z. Bern et al., Binary Dynamics through the Fifth Power of Spin at O(G2), Phys. Rev. Lett. 130 (2023) 201402 [arXiv:2203.06202] [INSPIRE].
3. M. Levi and J. Steinhoff, Spinning gravitating objects in the effective field theory in the post-Newtonian scheme, JHEP 09 (2015) 219 [arXiv:1501.04956] [INSPIRE].
4. LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
5. LIGO Scientific and Virgo collaborations, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献