Abstract
Abstract
We construct a new Yang-Mills Lagrangian based on a notion of minimal coupling that incorporates classical spin effects. The construction relies on the introduction of a new covariant derivative, which we name “classical spin covariant derivative”, that is compatible with the three-point interaction of the $$ \sqrt{\textrm{Kerr}} $$
Kerr
solution with the gauge field. The resulting Lagrangian, besides the correct three-point coupling, predicts a unique choice for contact terms and therefore it can be used to compute higher-point amplitudes such as the Compton, unaffected by spurious poles. Using double copy techniques we use this theory to extract gravity amplitudes and observables that are relevant to describe Kerr binary dynamics to all orders in the spin. In particular, we compute the 2PM ($$ \mathcal{O} $$
O
($$ {G}_N^2 $$
G
N
2
)) 2 → 2 elastic scattering amplitude between two classically spinning objects to all orders in the spin and use it to extract the 2PM scattering angle.
Publisher
Springer Science and Business Media LLC
Reference148 articles.
1. G. ’t Hooft, On the Quantum Structure of a Black Hole, Nucl. Phys. B 256 (1985) 727 [INSPIRE].
2. C.F.E. Holzhey and F. Wilczek, Black holes as elementary particles, Nucl. Phys. B 380 (1992) 447 [hep-th/9202014] [INSPIRE].
3. R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP 12 (2014) 056 [arXiv:1410.0239] [INSPIRE].
4. LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
5. LIGO Scientific and Virgo collaborations, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献