Simulation of pool boiling of nanofluids by using Eulerian multiphase model

Author:

Kamel Mohammed SaadORCID,Al-agha Mohamed Sobhi,Lezsovits Ferenc,Mahian Omid

Abstract

AbstractIn the present work, a new simulation of nanofluid/vapor two-phase flow inside the 2-D rectangular boiling chamber was numerically investigated. The Eulerian–Eulerian approach used to predict the boiling curve and the interaction between two phases. The surface modification during pool boiling of silica nanofluid represented by surface roughness and wettability is put into the account in this simulation. New closure correlations regarding the nucleation sites density and bubble departure diameter during boiling of silica nanofluid were inserted to extend the boiling model in this work. Besides, the bubble waiting time coefficient which involved in quenching heat flux under heat flux partitioning HFP model was corrected to improve the results of this study. The numerical results validated with experimental works in the literature, and they revealed good agreements for both pure water and nanofluids. The results found that when improving the heat flux partitioning model HFP by considering the surface modification of nucleate pool boiling parameters, it will give more mechanistic sights compared to the classical model, which is used for predicting of boiling heat transfer of pure liquid.

Publisher

Springer Science and Business Media LLC

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical modeling and analysis of nanofluids subcooled boiling in a horizontal circular tube;Numerical Heat Transfer, Part B: Fundamentals;2024-06-12

2. Enhancing heat transfer in thermosyphons: The role of self-rewetting nanofluids, and filling ratios for improved performance;International Journal of Heat and Mass Transfer;2024-05

3. Investigating the effect of the fluid properties on bubble dynamics and heat transfer in a tapered microgap with multiphase flow modeling;Applied Thermal Engineering;2024-01

4. Experimental and Numerical Investigations on Nucleate Pool Boiling Over Flat Surface;Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India;2024

5. Turbulent Eulerian–Eulerian simulation and Taguchi optimization of twin oblique nanofluid jets injecting into a water cross-flow;International Journal of Ambient Energy;2023-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3