Effects of thermal annealing and solvent-induced crystallization on the structure and properties of poly(lactic acid) microfibres produced by high-speed electrospinning

Author:

Vadas DánielORCID,Nagy Zsombor K.ORCID,Csontos IstvánORCID,Marosi GyörgyORCID,Bocz KatalinORCID

Abstract

AbstractThis research concentrates on the marked discrepancies in the crystalline structure of poly(lactic acid) (PLA) nano- and microfibres, achieved by different annealing strategies. PLA nonwoven mats were produced by high-speed electrospinning. The high-speed production technique allowed the manufacturing of PLA microfibres with diameters of 0.25–8.50 µm with a relatively high yield of 40 g h−1. The crystalline content of the inherently highly amorphous microfibres was increased by two methods; thermal annealing in an oven at 85 °C was compared to immersion in absolute ethanol at 40 °C. The morphology of the fibres was examined by scanning electron microscopy; crystalline forms and thermal properties were assessed using X-ray diffractometry, Raman spectrometry, differential scanning calorimetry (DSC) as well as modulated DSC. As a consequence of 45-min heat treatment, the crystalline fraction increased up to 26%, while solution treatment resulted in 33% crystallinity. It was found that only disordered α′ crystals are formed during the conventional heat treatment; however, the ethanol-induced crystallization favours the formation of the ordered α polymorph. In connection with the different crystalline structures, noticeable changes in the macroscopic properties such as heat resistance and mechanical properties were evinced by localized thermomechanical analysis and static tensile test, respectively.

Funder

Emberi Eroforrások Minisztériuma

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3