Non-Woven Fibrous Polylactic Acid/Hydroxyapatite Nanocomposites Obtained via Solution Blow Spinning: Morphology, Thermal and Mechanical Behavior

Author:

González-Benito Javier12ORCID,Zuñiga-Prado Stephania1,Najera Julian3ORCID,Olmos Dania12ORCID

Affiliation:

1. Department of Materials Science and Engineering and Chemical Engineering, Instituto de Química y Materiales Álvaro Alonso Barba (IQMAA), Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Madrid, Spain

2. Instituto de Química y Materiales Álvaro Alonso Barba (IQMAA), Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Madrid, Spain

3. Department of Aerospace & Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

Abstract

Polylactic acid (PLA) is widely used in tissue engineering and other biomedical applications. PLA can be modified with appropriate biocompatible ceramic materials since this would allow tailoring the mechanical properties of the tissues to be engineered. In this study, PLA-based non-woven fibrillar nanocomposites containing nanoparticles of hydroxyapatite (HA), a bioceramic commonly used in bone tissue engineering, were prepared via solution blow spinning (SBS). The compositions of the final materials were selected to study the influence of HA concentration on the structure, morphology, and thermal and mechanical properties. The resulting materials were highly porous and mainly constituted fibers. FTIR analysis did not reveal any specific interactions. The diameters of the fibers varied very little with the composition. For example, slightly thinner fibers were obtained for pure PLA and PLA + 10% HA, with fiber diameters of less than 400 nm, while the thicker fibers were found for PLA + 1% HA, with average diameters of 427 ± 170 nm. The crystallinity and stiffness of the PLA/HA composite increased with the HA content. Further, composites containing PLA fibers with slightly larger diameters were more ductile. Thus, with an appropriate balance between factors, such as the diameter of the solution-blow-spun PLA fibers, HA particle content, and degree of crystallinity, PLA/HA composites may be effectively used in tissue engineering applications.

Funder

Ministerio de Ciencia e Innovación of Spain

Plan de Recuperación, Transformación y Resiliencia

Universidad Carlos III de Madrid, Fondos de Investigación of Fco. Javier González Benito

Strategic Action in Multifunctional Nanocomposite Materials

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3