Abstract
AbstractWe discuss a deep learning based approach to model the complex dynamics of commodity prices observed in real markets. A regime-switching model is proposed to describe the time evolution of market prices. In this model, the base regime is described by a mean-reverting diffusion process and the second regime is driven by the predictions of a deep neural network trained on the market log-returns time series. A statistical technique, based on the method of simulated moments, is proposed to estimate the model on market data. We applied this methodology to energy commodity price time series with very different characteristics, namely the US wholesale electricity, natural gas and crude oil price daily time series. The obtained results show a good agreement with empirical data. In particular, the model seems to reproduce in a very interesting way the first four central moments of the empirical distributions of log-returns as well as the shape of the observed price time series.
Publisher
Springer Science and Business Media LLC
Subject
General Energy,Economics and Econometrics,Modeling and Simulation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献