Short-term stochastic movements of electricity prices and long-term investments in power generating technologies

Author:

Mari CarloORCID

Abstract

AbstractModeling probability distributions for the long-term dynamics of electricity prices is of key importance to value long-term investments under uncertainty in the power sector, such as investments in new generating technologies. Starting from accurate modeling of the short-term behavior of electricity prices, we derive long-term stationary probability distributions. Then, investments in new baseload generating technologies, namely gas, coal and nuclear power, are discussed. In order to compute the stochastic Net Present Value of investments in new generating technologies, the revenues from selling electricity in power markets as well as the costs which come from buying fuels at uncertain market prices must be evaluated over very long time horizons, i.e., over the whole lifetime of the plants. Starting from accurate short-term stochastic models of fuel prices in addition to electricity prices, we provide long-run probability distributions which are used to compute revenues and costs incurring during the whole lifetime of the plants. Five sources of uncertainty are taken into account, namely electricity market prices, fossil fuel prices (natural gas and coal prices), nuclear fuel prices and $$\hbox {CO}_{\text{2 }}$$ CO 2 prices. Our evaluation model is calibrated on empirical data to account for both historical market prices and macroeconomic views about future trends of electricity and fuel prices. The full probability density of the stochastic Net Present Value is thus determined for each generation technology considered in this study.

Funder

Università degli Studi G. D'Annunzio Chieti Pescara

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Economics and Econometrics,Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3