Dwell Time Algorithm Based on Bounded Constrained Least Squares Under Dynamic Performance Constraints of Machine Tool in Deterministic Optical Finishing

Author:

Zhang YunfeiORCID,Fang Fengzhou,Huang Wen,Fan Wei

Abstract

AbstractThe dwell time algorithm is one of the most important techniques within the deterministic optical surfacing technologies. The existing dwell time algorithms are generally based on non-negative least squares (NNLS) without considering the dynamic performance constraints of machine tools. This is a circumstance that leads to poor convergence accuracy. In this paper, a dwell time algorithm, based on bounded constrained least-squares (BCLS) under dynamic performance constraints of the machine tool, has been developed. The upper and lower constraints of the dwell time model could be derived through the acceleration and deceleration mechanism of the CNC (Computer Numerical Control) machine tools. A two-metric projection Newton iteration algorithm was used to solve the large-scale dwell time model, which greatly improved the computation efficiency. The results of the experiments and simulations showed that the proposed algorithm will give a very high convergence accuracy for optical finishing with machine tools with different dynamic performances. When the machine acceleration was set to a value as low as 0.1 g, the accuracies of the surface figures PV (Peak-to-Valley) and RMS (Root Mean Square) till improved by 40.8% and 55.2%, respectively, when using the BCLS algorithm. The influences of different dynamic performances of the machine tools on the dwell time solutions have also been investigated, which will provide a good guidance in the design of deterministic polishing machine tools.

Funder

Science Challenge Project

High-end CNC Machine Tools and Basic Manufacturing Equipment Major National Science and Technology Project

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3