Lithography-free and Highly Angle Sensitive Structural Coloration Using Fabry–Perot Resonance of Tin

Author:

Kim Young-Gyun,Quan Ying-Jun,Kim Min-Soo,Cho Younggyun,Ahn Sung-HoonORCID

Abstract

AbstractRecently, there has been much interest in applying the color changes of nano-patterned structures to sensor technology. However, the lithographic nano-patterning process is not environmentally friendly, and it is difficult to fabricate large areas of color due to limitations associated with this approach. In this study, we realized a highly tunable structural coloration based on a Fabry–Perot interferometer design that does not require nano-patterning processes. To increase the reflected color change according to the angle, a color element using an asymmetric metal–insulator–metal structure was applied, fabricated using silver–silicon dioxide–tin (Sn), respectively. Using the optical properties of Sn, we maximized the change in reflection color and realized three primary colors of subtractive color of cyan, magenta and yellow according to the angle of designed MIM structure. Theoretical and experimental results revealed that the color and intensity of the reflectance depended strongly on the angle of the reflective surfaces. The manufacturing process is simple and yields large surfaces of high quality. Based on this premise, we fabricated a soft robot capable of color camouflage, and an angle-detecting color sensor for inspecting the three-dimensional shape quality of curved glass with a high sensitivity of 1.8 nm/degree. In addition, we propose a shape evaluation method by color, spectrometry, and monochromatic light.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3