Affiliation:
1. Elmore Family School of Electrical & Computer Engineering and Birck Nanotechnology Center Purdue University 1205 W State St West Lafayette IN 47906 USA
2. Institute of Optoelectronics Military University of Technology 2 Kaliskiego St Warsaw 00–908 Poland
3. Institute of Physics Faculty of Physics Astronomy, and Informatics Nicolaus Copernicus University Toruń 87–100 Poland
4. Department of Computer Graphics Technology Purdue University 401 N. Grant St, Knoy Hall West Lafayette IN 47907 USA
Abstract
AbstractA sustainable, lithography‐free process is demonstrated for generating non fading plasmonic colors with a prototype device that produces a wide range of vivid colors in red, green, and blue (RGB) ([0‐1], [0‐1], [0‐1]) color space from violet (0.7, 0.72, 1) to blue (0.31, 0.80, 1) and from green (0.84, 1, 0.58) to orange (1, 0.58, 0.46). The proposed color‐printing device architecture integrates a semi‐transparent random metal film (RMF) with a metal back mirror to create a lossy asymmetric Fabry‐Pérot resonator. This device geometry allows for advanced control of the observed color through the five‐degree multiplexing (Red‐Green‐Blue (RGB) color space, angle, and polarization sensitivity). An extended color palette is then obtained through photomodification process and localized heating of the RMF layer under various femtosecond laser illumination conditions at the wavelengths of 400 nm and 800 nm. Colorful design samples with total areas up to 10 mm2 and 100 µm resolution are printed on 300‐nm‐thick films to demonstrate macroscopic personalized high‐resolution color generation. The proposed printing approach can be extended to other applications including laser marking, anti‐counterfeiting, and chromo‐encryption.
Funder
Wojskowa Akademia Techniczna
National Science Foundation
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献