Author:
Ravimal Dinuka,Kim Hanul,Koh Daegwon,Hong Jin Hyuk,Lee Sun-Kyu
Abstract
AbstractThis paper presents a new machine vision framework for the efficient examination and classification of surface textures on medium- and large-sized mold products, such as used for automobiles, TVs, and refrigerators. Existing techniques, which are based on the hands and eyes of skilled workers, are inconsistent and time-consuming. Although there are many types of precise surface inspection and measurement methods, most are difficult to apply at industrial sites or by finishing robots due to problems such as speed, setup limitations, and robustness. This paper proposes two techniques based on image processing that aims to automate surface inspection during an unmanned lapping process that is mainly employed to eliminate milling tool marks. First, both the shape of the reflected light and the intensity of the captured near-field contrast image right after the reflected specular are used to determine the machined surface state, and the presence of tool marks as the line light source scans counter-clockwise. Second, the photometric stereo technique is used to detect surface scratches through the normal map that recovers the surface. The proposed techniques show localized machined patterns and classify them with high accuracy.
Funder
The National Research Foundation of Korea
Gwangju Institute of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Management of Technology and Innovation,Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献