Impact of Phenolic Acid Derivatives on β-Lactoglobulin Stabilized Oil-Water-Interfaces

Author:

Bock AlinaORCID,Kieserling Helena,Rohn Sascha,Steinhäuser Ulrike,Drusch Stephan

Abstract

AbstractThe physical stability of protein-based emulsions depends on intra- and intermolecular interactions of the interfacial protein-film. As studied in aqueous systems before, phenolic acid derivatives (PADs) non-covalently or covalently crosslink proteins depending on pH-value and thus, may impact interfacial protein-films. Whether these interactions occur in the same manner at the interface as in water and how they vary the properties of the interfacial protein-film has not been clarified. The present study aimed to investigate the interfacial protein-film viscoelasticity and physical emulsion-stability after non-covalently (pH 6.0) and covalently (pH 9.0) crosslinking depending on PAD-structure. For this purpose, we studied an interfacial β-lactoglobulin film with dilatational rheology after crosslinking with PADs, varying in number of π-electrons and polar substituents. Then, we analyzed the physical emulsion-stability by visual evaluation and particle size distribution. The results indicate that PADs with a high number of π-electrons (rosmarinic acid and chicoric acid) weaken the protein-film due to competing of phenol-protein interactions with protein-protein interactions. This is reflected in a decrease in interfacial elasticity. PADs with an additional polar substituent (verbascoside and cynarine) seem to further weaken the protein film, since the affinity of the PADs to the interface increases, PADs preferentially adsorb and sterically hinder protein-protein interactions. In emulsions at pH 6.0 and thus low electrostatic repulsion, PADs promote bridging-flocculation. Due to higher electrostatic repulsion at pH 9.0, the PADs are sterically hindered to form bridges, even though they are polymeric. Hence, our research enables the control of protein-film viscoelasticity and emulsion-stability depending on the PAD-structure. Graphical abstract

Funder

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biophysics,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3