Effects of Hydrothermal Treatments on Physicochemical Properties and In Vitro Digestion of Starch

Author:

Chakraborty Ishita,Govindaraju Indira,Rongpipi Sintu,Mahato Krishna Kishore,Mazumder NirmalORCID

Abstract

AbstractStarchy food items such as rice and potato with high carbohydrate content raise blood sugar. Hence, consuming low glycaemic foods is one tool to keep diabetes under control. In this study, potato and brown rice (Njavara rice) starches were subjected to hydrothermal treatments: heat moisture treatment (HMT) and annealing (ANN) to develop starch-based food products fit for consumption by diabetic patients. The effects of hydrothermal treatments on physicochemical properties and in-vitro enzymatic digestion of starch were determined. It was observed that hydrothermal treatments decreased the swelling power (SP)% and increased the water solubility (WS)% of the native starches. Native potato starch (PSN) showed a high SP of 80.33%, while annealed potato starch (PANN) and heat moisture treated potato starch (PHMT) showed SP reduced to 65.33% and 51.66%, respectively. Similarly, the SP % reduced from 64.33% in native brown rice (BRN) to 44.66% in annealed brown rice (BRANN) and 38.33% in heat moisture treated brown rice (BRHMT). WS % increased from 32.86% in PSN to 36.66% in PANN and 40.66% in PHMT. In BRN, the WS % increased from 14.0% to 14.66% in BRANN and 18.33% in BRHMT. Amylose content increased from 13.23% and 14.56% in PSN and BRN to 16.14% in PANN 17.99% in PHMT, 17.33% in BRANN, and 18.98% in BRHMT. The PSN crystallinity index reduced from 33.49 to 30.50% in PANN and 32.60% in PHMT. At 12 h of enzymatic digestion, it was found that the degree of hydrolysis (DoH) of PHMT (31.66%) and PANN (36.82%) reduced when compared to PSN (41.09%). Similarly, BRHMT exhibited the lowest DoH at 12 h compared to BRANN (29.24%) and BRN (35.48%). This study highlights the importance of hydrothermal treatments on starch in developing low glycaemic index commercial starch-based food products.

Funder

Department of Biotechnology , Ministry of Science and Technology

Department of Science and Technology, Ministry of Science and Technology

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biophysics,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3