The Influence of Steel Composition on the Formation and Effectiveness of Anti-wear Films in Tribological Contacts

Author:

Pagkalis Konstantinos,Spikes Hugh,Jelita Rydel Jakub,Ingram Marc,Kadiric Amir

Abstract

AbstractThe effectiveness of antiwear additives in laboratory tests is commonly evaluated using specimens made of AISI 52100 through-hardened bearing steel. However, many lubricated machine components are made of steels with significantly different material compositions, which raises an important practical question of whether the performance of antiwear additives with these other steel types is different from that established with AISI 52100. To help answer this question, this paper investigates the influence of steel composition on the formation and effectiveness of antiwear films. Four steels that are commonly used in tribological applications, namely AISI 52100 through-hardened bearing steel, 16MnCr5 case-carburised gear steel, M2 high speed steel and 440C stainless steel are tested in rolling-sliding, ball-on-disc contacts lubricated with three custom-made oils, one containing ZDDP and two containing different types of ashless antiwear additives. The relative effectiveness of their boundary films was assessed by measuring their thickness and associated wear and friction over 12 h of rubbing at two specimen roughness levels. For ZDDP it was found that the formation of antiwear film was not significantly influenced by steel composition or specimen surface roughness. A similar tribofilm thickness, final tribofilm roughness and friction was observed with all four steels. No measurable wear was observed. By contrast, for the ashless antiwear additives the thickness and effectiveness of their tribofilms was strongly influenced by steel composition, particularly at higher roughness levels. The exact trends in film thickness vs steel relationship depended on the specific chemistry of the ashless additive (ester-based or acid-based) but in general, relative to AISI 52100 steel, M2 steel promoted ashless tribofilm formation whilst 440C retarded ashless tribofilm formation. This behaviour is attributed to the presence of different alloying elements and the ability of the additives to extract metal cations from the rubbing surfaces to support the growth of a tribofilm. In all cases ZDDP films were thicker and rougher, and produced higher friction than those formed by the ashless additives. However, unlike ZDDP, ashless blends generally produced significant wear, particularly with 16MnCr5 and M2 steels. The results indicate that to ensure reliable performance of a given machine component, the chemistry of an ashless antiwear additive should be matched with the types of steel present in the lubricated machine.

Funder

FP7 People: Marie-Curie Actions

Afton Chemical

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3