Author:
Cao Shoufan,Xu Zhang,Liang Yi,Mischler Stefano
Abstract
Purpose
The aim of this study is to experimentally analyze the friction and wear responses of different steels to different surface films generated in oil-lubricated tribological contacts.
Design/methodology/approach
Tribological experiments were conducted using a 100Cr6 bearing ball sliding against a V155 carbon steel disk and 316L stainless steel disk, respectively. Lubricants with additives known to form zinc dialkyl-dithiophosphate (ZDDP) or Ca tribofilms were used.
Findings
Both of the ZDDP and Ca tribofilms helped stabilize the friction coefficient of the carbon steel and stainless steel. The ZDDP tribofilm could effectively protect the carbon steel from wear, in contrast to the stainless steel, whereas the wear of both carbon steel and stainless steel could be significantly reduced by the Ca tribofilm. In the case of neither ZDDP nor Ca tribofilms formation, the 100Cr6 ball was worn by the V155 disk and generated a special surface topography. A polishing wear mechanism was proposed to explain the wear of the 100Cr6 ball.
Originality/value
This study clearly shows the different friction and wear responses of steels to the different surface films and the response is dependent on the tested steel.
Subject
Surfaces, Coatings and Films,General Energy,Mechanical Engineering