Abstract
AbstractThe cornerstone of thin-film flow modeling is the Reynolds equation—a lower-dimensional representation of the Navier–Stokes equation. The derivation of the Reynolds equation is based on explicit assumptions about the constitutive behavior of the fluid that prohibit applications in multiscale scenarios based on measured or atomistically simulated data. Here, we present a method that treats the macroscopic flow evolution and the calculation of local cross-film stresses as separate yet coupled problems—the so-called macro and micro problem. The macro problem considers mass and momentum balance for compressible fluids in a height-averaged sense and is solved using a time-explicit finite-volume scheme. Analytical solutions for the micro problem are derived for common constitutive laws and implemented into the Height-averaged Navier–Stokes (HANS) solver. We demonstrate the validity of our solver on examples, including mass-conserving cavitation, inertial effects, wall slip, and non-Newtonian fluids. The presented method is not limited to these fixed-form relations and may therefore be useful for testing constitutive relations obtained from experiment or simulation.
Funder
Deutsche Forschungsgemeinschaft
Karlsruher Institut für Technologie (KIT)
Publisher
Springer Science and Business Media LLC
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献